چگونه مرکز چرخش را پیدا کنیم؟ (2D)

مدیران انجمن: parse, javad123javad

ارسال پست
نمایه کاربر
rohamavation

نام: roham hesami radرهام حسامی راد

محل اقامت: 100 مایلی شمال لندن جاده آیلستون، لستر، لسترشر. LE2

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 3230

سپاس: 5491

جنسیت:

تماس:

چگونه مرکز چرخش را پیدا کنیم؟ (2D)

پست توسط rohamavation »

چگونه مرکز چرخش را پیدا کنیم؟ (2D)
اول از همه من فرض می کنم که یک چند ضلعی شناور آزاد همیشه حول مرکز جرم خود نمی چرخد مگر اینکه نیروی خالص صفر باشد (بر اساس نقاط زیر). اگر این درست نیست لطفا به من بگویید.
نیروی خالص از طریق مرکز ثقل (بدون گشتاور خالص) صرفاً یک جسم صلب (هر نقطه ای از جسم) را منتقل می کند.
گشتاور خالص در هر نقطه از جسم (بدون نیروی خالص) صرفاً یک جسم صلب را حول مرکز ثقلش می‌چرخاند.
با این موضوع، چگونه می توانم مرکز چرخش چند ضلعی با مرکز جرم C را پیدا کنم نیروی Fو نقطه ای که نیرو وارد می شود همچنین چه مقدار از نیرو به نیروی انتقالی و چه مقدار از آن به نیروی چرخشی تبدیل می شود؟ وقتی بیش از یک نیرو وجود دارد چگونه نیروها جمع می شوند؟
یک راه نیمه هندسی آسان برای یافتن مرکز چرخش در اثر یک نیرو وجود دارد.
تصویر
بازوی لحظه ای j را پیدا کنید نیرویی که از طریق A.$c = r \cos \theta$شعاع چرخش مرکز جرم C را پیدا کنید$\rho = \sqrt{ \frac{I_C}{m} }$
فاصله ℓ را اندازه گیری کنید از مرکز جرم فاصله بگیرید و نقطه R را علامت بزنید$\ell = \frac{\rho^2}{c}$
نقطه R مرکز نمونه چرخش است.مثال تخته ای به طول a و و عرض b با نیروی F به یک طرف آن زده می شود . یک سیستم مختصات را در مرکز جرم قرار دهید و بازوی گشتاور نیرو را به صورت $c=\frac{a}{2}$اندازه بگیرید. گشتاور جرمی اینرسی یک تخته است
$I_C = \frac{m}{12} \left( a^2+b^2\right)$
و از این رو شعاع چرخش در اطراف مرکز است
$\rho = \sqrt{ \frac{a^2+b^2}{12} }$
مثال
تصویر
با روش بالا مرکز چرخش در یک فاصله است
$\boxed{\ell = \frac{\rho^2}{c} = \frac{ \frac{a^2+b^2}{12} } {\frac{a}{2} } = \frac{a^2+b^2}{6 a} }$
بیایید همان پاسخ را با استفاده از معادلات حرکت پیدا کنیم.
مجموع نیروهای جسم هستند
$\sum \boldsymbol{F} = (0,F,0)$
مجموع لحظه در مورد مرکز هستند
$\sum \boldsymbol{M} = (0,0,\frac{a}{2} F)$
شتاب خطی مرکز است
$\boldsymbol{a} = \frac{\sum \boldsymbol{F}}{m} = (0,\frac{F}{m},0)$
شتاب زاویه ای جسمه است
$\boldsymbol{\alpha} = \frac{\sum \boldsymbol{M}}{I_C} = (0,0,\frac{6 F a}{m (a^2+b^2)})$
مرکز چرخش R را طوری بیابید که $\boldsymbol{a}_y=\ell \boldsymbol{\alpha}_z$ باشد
$\boxed{\ell = \frac{ \frac{F}{m} }{ \frac{6 F a}{m (a^2+b^2)} } = \frac{a^2+b^2}{6 a}}$
همان پاسخ!! برای بدست آوردن مرکز چرخش نیازی به انجام معادلات حرکت نیست. نقطه صرفاً نتیجه خواص اینرسی و هندسه است.
من فکر می کنم آنچه شما در مورد آن می پرسید با قضیه اساسی در مکانیک اجسام صلب پاسخ داده می شود، که بیان می کند که حرکت هر جسم صلب را می توان به حرکت مرکز جرم آن (نه لزوماً مستطیل) و یک چرخش حول آن تجزیه کرد. مرکز جرم (COM).
با این حال ایده این نیست که یک مرکز ذاتی چرخش وجود دارد که گاهی اوقات با مرکز جرم منطبق می شود، یا اینکه ما لزوماً نیروهای وارد بر جسم را به اجزایی تجزیه می کنیم که COM را منتقل می کند و دیگری که گشتاور را در مورد COM ایجاد می کند. . درست است که معادلات حرکت وقتی به این شکل بیان می شوند ساده ترین شکل را به دست می آورند.
بنابراین برای پاسخ مستقیم به سوالات من
چگونه می توانم مرکز چرخش یک چند ضلعی را زمانی که مرکز جرم (C)، نیرو (F) و نقطه اعمال نیرو (A) است، پیدا کنم؟
مرکز چرخش را به عنوان (C) در نظر بگیرید، صرف نظر از اینکه نیرو در کجا اعمال می شود.
همچنین چه مقدار از نیرو به نیروی انتقالی و چه مقدار از آن به نیروی چرخشی تبدیل می شود؟
همه آن، در هر دو مورد. معادلات حرکت برای COM چند ضلعی مسطح شما درست است
$M \vec{a} = \vec{F}\\
I\alpha \vec{k} = \vec{T}$جایی که $M$ جرم چند ضلعی کل$\vec{a}$ است شتاب خطی COM (و بدنه صلب) است، I ممان اینرسی نسبت به COM است، $\alpha$
شتاب زاویه ای در مورد COM، $\vec{k}$ است بردار واحد نرمال به صفحه چند ضلعی است و $\vec{T}$
گشتاور $\vec{F}$ است در مورد COM در 3D معادله گشتاور شامل یک عبارت اضافی در سمت چپ است.
وقتی بیش از یک نیرو وجود دارد، چگونه نیروها جمع می شوند؟
مثل همیشه بردار. نیروی کل مجموع بردار نیروهای منفرد است و برای 2 بعدی گشتاور کل مجموع گشتاورهای مجزا در مورد COM یا گشتاور کل نیرو در مورد COM است، هر کدام که شما ترجیح می دهید.
تصویر

ارسال پست