درود!
بنده پایه دهم هستم خواستم بدونم که ما مثلا در معادلات معمولی مثل F=ma عدد جایگذاری میکنیم و جواب را عدد میگیریم
ولی ظاهراً در معادله شرودینگر به این صورت نیست
معادلاتی مثل همین معادله شرودینگر چطوری حل میشن و جوابشون به چه صورته؟
آیا عدده یا خیر
ممنون میشم با توجه به سطح سوادم توضیح بدید
معادله شرودینگر چطوری حل میشه؟
Re: معادله شرودینگر چطوری حل میشه؟
درود بر شما ...
معادله $F=ma$ هم در دبیرستان ساده و معمولی نوشته شده که راحت باشه؛ وگرنه اون هم «غیرمعمولی» هست! شتاب در واقع مشتق دوم مکان نسبت به زمانه. پس معادله نیوتن به طور کلی معادلهای جبری نیست، بلکه معادله دیفرانسیل هست و پاسخ معادله نیوتن، موقعیت ذره رو در زمانهای مختلف مشخص میکنه. در بعضی حالتهای خاص، میتونیم جوابهای معادله نیوتن رو به صورت جبری دربیاریم. مثلاً اگر شتاب ثابت باشه، پاسخ معادله نیوتن $x=\frac12 at^2+v_0t+x_0$ میشه.
معادله شرودینگر هم نوعی معادله دیفرانسیل است و در بعضی حالتهای خاص، پاسخ جبری (یا تحلیلی) سادهای داره. در حالت کلی، راهحل مشخص ندارد. مثل معادله $x+1=2$ نیست که بگوییم همه اعداد را یک طرف میبریم و بر ضریب مجهول تقسیم میکنیم تا مجهول مشخص شود. همچنان که معادله نیوتن هم در حالت کلی راهحل مشخصی ندارد.
پینوشت:
هر معادلهای نوعی تساوی است که بین متغیرها برقرار است. اگر متغیر، تابع باشد و معادله بر اساس مشتقات تابع نوشته شده باشد، به آن معادله، معادله دیفرانسیل میگویند. مسلماً متغیر خشکوخالی بیمعناست و هر متغیر در بازهای از اعداد درست است. معنی نمیدهد که بپرسیم «جواب فلان معادله عدد است یا خیر».
معادله $F=ma$ هم در دبیرستان ساده و معمولی نوشته شده که راحت باشه؛ وگرنه اون هم «غیرمعمولی» هست! شتاب در واقع مشتق دوم مکان نسبت به زمانه. پس معادله نیوتن به طور کلی معادلهای جبری نیست، بلکه معادله دیفرانسیل هست و پاسخ معادله نیوتن، موقعیت ذره رو در زمانهای مختلف مشخص میکنه. در بعضی حالتهای خاص، میتونیم جوابهای معادله نیوتن رو به صورت جبری دربیاریم. مثلاً اگر شتاب ثابت باشه، پاسخ معادله نیوتن $x=\frac12 at^2+v_0t+x_0$ میشه.
معادله شرودینگر هم نوعی معادله دیفرانسیل است و در بعضی حالتهای خاص، پاسخ جبری (یا تحلیلی) سادهای داره. در حالت کلی، راهحل مشخص ندارد. مثل معادله $x+1=2$ نیست که بگوییم همه اعداد را یک طرف میبریم و بر ضریب مجهول تقسیم میکنیم تا مجهول مشخص شود. همچنان که معادله نیوتن هم در حالت کلی راهحل مشخصی ندارد.
پینوشت:
هر معادلهای نوعی تساوی است که بین متغیرها برقرار است. اگر متغیر، تابع باشد و معادله بر اساس مشتقات تابع نوشته شده باشد، به آن معادله، معادله دیفرانسیل میگویند. مسلماً متغیر خشکوخالی بیمعناست و هر متغیر در بازهای از اعداد درست است. معنی نمیدهد که بپرسیم «جواب فلان معادله عدد است یا خیر».
- rohamavation
نام: roham hesami radرهام حسامی راد
محل اقامت: 100 مایلی شمال لندن جاده آیلستون، لستر، لسترشر. LE2
عضویت : سهشنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴
پست: 3070-
سپاس: 5322
- جنسیت:
تماس:
Re: معادله شرودینگر چطوری حل میشه؟
ببین مربوط فیزیک کوانتوم و رفتار دوگانه موج و ذرهای هست اگه حالت موج ذره رو در نظر بگیری${\displaystyle y(t)=A\cdot e^{-\lambda t}\cdot \cos(\omega t-\phi )}$ که موج به مختصه مکانی (x) و زمانی (t) وابستیه.معادله موج (Wave equation) معادلهای خطی و کلاسیک از نوع معادلات دیفرانسیل هذلولویه. در حالت دو بعدی (نسبت به مکان) معادلهٔ درجهٔ دوم موج هم${\displaystyle {\partial ^{2}u \over \partial t^{2}}=c^{2}\nabla ^{2}u\!}$هستکه در اینجا ${\displaystyle \nabla ^{2}={\partial ^{2}u \over \partial x^{2}}+{\partial ^{2}u \over \partial y^{2}}\!} $عملگر لاپلاسه
${\displaystyle t\!}$ زمان ${\displaystyle u\!} $دامنهٔ موجه و ${\displaystyle c\!}$ ضریبی است ثابت برابر با سرعت موجه به عنوان تعمیمی از معادلهٔ خطی موج میتوان سرعت را تابعی از دامنه موج گرفت. پس ${\displaystyle {\partial ^{2}u \over \partial t^{2}}=c(u)^{2}\nabla ^{2}u}$ جواب این معادله دیفرانسیل که یکیش در حالت یک بعدی ${\displaystyle {\partial ^{2}u \over \partial t^{2}}-c^{2}{\partial ^{2}u \over \partial x^{2}}=0\!}$ وجواب سینوسی که گفتم بهتون اینکه چطور بهش میرسی نمیدونم فقط نسبت به جابجایی و زمان باید ازش مشتق بگیری الباقیشو نمیدونم اما برای امواح مکانیکی معادله دیفرانسیل یک موج $\frac{\partial^2 A}{\partial t^2}=v(\lambda)^2\,\frac{\partial^2 A}{\partial x^2}\tag 1$ که $A(t,x)=A_0\,\sin(\omega(\lambda)\,t-k\,x)$اون چیزیه که باهاش اشناییم
${\displaystyle t\!}$ زمان ${\displaystyle u\!} $دامنهٔ موجه و ${\displaystyle c\!}$ ضریبی است ثابت برابر با سرعت موجه به عنوان تعمیمی از معادلهٔ خطی موج میتوان سرعت را تابعی از دامنه موج گرفت. پس ${\displaystyle {\partial ^{2}u \over \partial t^{2}}=c(u)^{2}\nabla ^{2}u}$ جواب این معادله دیفرانسیل که یکیش در حالت یک بعدی ${\displaystyle {\partial ^{2}u \over \partial t^{2}}-c^{2}{\partial ^{2}u \over \partial x^{2}}=0\!}$ وجواب سینوسی که گفتم بهتون اینکه چطور بهش میرسی نمیدونم فقط نسبت به جابجایی و زمان باید ازش مشتق بگیری الباقیشو نمیدونم اما برای امواح مکانیکی معادله دیفرانسیل یک موج $\frac{\partial^2 A}{\partial t^2}=v(\lambda)^2\,\frac{\partial^2 A}{\partial x^2}\tag 1$ که $A(t,x)=A_0\,\sin(\omega(\lambda)\,t-k\,x)$اون چیزیه که باهاش اشناییم
