پارادوکس آنتروپی و سردرگمی با انرژی گیبس

مدیران انجمن: javad123javad, parse

ارسال پست
نمایه کاربر
rohamjpl

نام: Roham Hesami

محل اقامت: Tehran, Qeytariyeh

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 925

سپاس: 595

جنسیت:

تماس:

پارادوکس آنتروپی و سردرگمی با انرژی گیبس

پست توسط rohamjpl »

پارادوکس آنتروپی و سردرگمی با انرژی گیبس
پارادوکس گیبس زمانی بوجود می آید که این دو گاز یکسان باشند. ... اگر دو گاز یکسان در دو دما و فشار یکسان در دو محفظه داشته باشید ، با جدا شدن پارتیشن چیزی تغییر نمی کند - بنابراین نباید تغییری در آنتروپی ایجاد شود.این پارادوکس گیبس است. تناقض با این فرض که ذرات گاز در واقع غیر قابل تشخیص هستند ، حل می شود. این بدان معناست که تمام حالاتی که فقط با یک تغییر ذرات متفاوت هستند باید همان حالت در نظر گرفته شوند.مشتقات آنتروپی به ترتیب با توجه به تعداد ذره و انرژی. عبارت. به عنوان عامل گیبس شناخته می شود. برای محاسبه احتمال ، به یک عادی سازی نیاز داریم.
عامل.$G=H-TS_\text{sys}$ را تعریف کنید. سپس،
$\begin{align}
\mathrm dG &=\mathrm dH-S_\text{sys}\,\mathrm dT-T\,\mathrm dS_\text{sys}\\[3pt]
&=-T\left(\frac{-\mathrm dH}T+\mathrm dS_\text{sys}+S_\text{sys}\,\frac{\mathrm dT}T\right)
\end{align}$در شرایط دما و فشار ثابت ،$\frac{-\mathrm dH}T=\mathrm dS_\text{surr}$ و dT = 0. بنابراین ، ما در پایان با:
$\mathrm dG=-T(\mathrm dS_\text{sys}+\mathrm dS_\text{surr})=-T(\mathrm dS_\text{universe})\tag{roham-01}$با استفاده از $H=U+pV$ و با استفاده از قانون اول ترمودینامیک می توان نشان داد که:$\mathrm dG=V\,\mathrm dp-S\,\mathrm dT$
در ثابت p ، T ، این معادله به dG = 0 کاهش می یابد. با استفاده از این در roham-01 در ثابت T و $\mathrm dG=\mathrm dS_\text{universe}=0$ بازده می دهد.
بنابراین دقیقاً چگونه می توان اصطلاحاً "فرایندهای خود به خودی" را که دارای مقدار منفی dG در ثابت T و p هستند ، بدست آورد؟
تا حدودی می توانم ببینم که چرا نتیجه معقول است: شرایط فرض شده در مشتق شبیه فرایند ترمودینامیکی برگشت پذیر است که برای آن مشخص است $\mathrm dS_\text{universe}$ صفر است.سوال پررنگ اما هنوز بی پاسخ است. شاید من در مورد معنای واقعی ΔG گیج شده باشم.ماهیت آنچه در جریان است این است:معادله شما ، $dG = Vdp -SdT$ ، درست است ، اما محدودیت هایی دارد که شما متوجه آن نمی شوید. به طور خاص ، این فقط برای سیستم هایی اعمال می شود که (الف) بسته هستند (بنابراین هیچ ماده اضافه یا تفریق وجود ندارد) ، (ب) فقط یک جز component دارند (بنابراین بدون اختلاط ، تغییر فاز یا واکنش های شیمیایی) و (ج) که می تواند انجام دهد pV - فقط کار
[* این مورد همچنین برای سیستم های چند جزئی که در آنها ترکیب ثابت است اعمال می شود.]
برای درک اینکه چرا ، در چنین شرایطی ، dT = 0 و $dT = 0 \text{ and } dp = 0 \Rightarrow dG = 0$، بیایید قانون مرحله گیبس را برای چنین سیستمی اعمال کنیم. قانون فاز می گوید:$F = C − P + 2,$
که در آن C تعداد اجزا است ، P تعداد فازهای تعادل است (با p ، فشار اشتباه گرفته نمی شود) ، و F تعداد درجات آزادی است.
از آنجا که C = 1 و P = 1 ، F = 2 بدست می آوریم. این بدان معناست که ما فقط دو درجه آزادی داریم ، یعنی دو روش مستقل که می توانیم مناسبات شدید سیستم را تغییر دهیم. اگر تنها نوع کاری که می توانیم انجام دهیم کار pV است ، تنها راههایی که می توانیم خصوصیات شدید سیستم را تنظیم کنیم تغییر دما یا فشار آن است.
از این رو ، اگر محدودیت های dT = 0 و dp = 0 را روی یک سیستم تک جزئی بسته که فقط اجازه کار pV را می دهیم اعمال کنیم ، سیستم نمی تواند تغییر کند! و اگر سیستم نمی تواند تغییر کند ، مطمئناً $\boldsymbol{dG = 0}$
اما ممکن است اعتراض کنید ، dG حتی در T و p ثابت نیز به طور کلی صفر نیست. بنابراین چگونه این را با آنچه در بالا نوشتیم سازگار کنیم؟ خوب ، ما به عبارتی کلی تر برای dG نیاز داریم که اجازه کار غیر pV ، جمع و تفریق مواد و تغییر در ترکیب را بدهد:$dU = \text{đ}q + \text{đ}w +\sum_i \mu_i dn_i
= \text{đ}q + \text{đ}w(pV) + \text{đ}w (non\text{-}pV) + \sum_i \mu_i dn_i$
از آنجا که می توانیم dU را با استفاده از هر مسیری محاسبه کنیم ، بیایید از یک مسیر برگشت پذیر استفاده کنیم:
$dU = TdS - pdV + \text{đ}w (non\text{-}pV, rev) + \sum_i \mu_i dn_i$
و از:$G = U+pV-TS \Rightarrow dG = dU + pdV +Vdp - TdS - SdT$
$\Rightarrow dG = VdP -SdT+ \text{đ}w (non\text{-}pV, rev) + \sum_i \mu_i dn_i$
در اینجا ،$\sum_i \mu_i dn_i$ مجموع پتانسیل شیمیایی هر گونه$(\mu_i)$برابر تغییر در مقدار گونه $(dn_i)$ است. این تغییر در U و در نتیجه در G است ، زیرا ما ترکیب را تغییر می دهیم
از این رو ، حتی اگر dT = 0 و dp = 0 باشد ، اگر کار غیر pV نداشته باشیم و یا تغییر در ترکیب داشته باشیم (به عنوان مثال مخلوط کردن ، تغییر فاز ، افزایش یا از دست دادن ماده یا واکنش شیمیایی) ، اینگونه نخواهد بود که dG به صفر محدود شود.برای سیستم های دارای ترکیب متغیر (مخلوط)
روش دوم
$\mathrm dU=-p\mathrm dV + dw_{other}+ T\mathrm dS + \sum_i\mu_i\mathrm dn_i$
این منجر به$\mathrm dG = V\mathrm dP -S\mathrm dT + dw_{other}+ \sum_i\mu_i\mathrm dn_i$
یا ، در دما و فشار ثابت ،$\mathrm dG = dw_{other}+ \sum_i\mu_i\mathrm dn_i$
با توجه به مسئله خودانگیختگی ، توضیحات در اظهارنظر ژه نهفته است. برای فرایندی که شامل یک ماده خالص در یک سیستم بسته است و فقط تحت کار انبساط در T و p ثابت است ،$dH=dq$
ولی$dS=\frac{dq_{rev}}{T}$ برچسب "rev" مهم است ، معادله dS = dqT فقط برای هیچ فرایندی برقرار نیست.در T و p ثابت اما بدون محدودیت در برگشت پذیری ،$dS=\frac{dq}{T}$
قانون دوم$dS_{universe} \ge 0$حاکی از آن است
$\begin{align} 0 &\ge -dS_{surroundings}-dS_{system}\\ 0 &\ge \frac{dq}{T} -\frac{dq_{rev}}{T}\\ 0 &\ge dq - dq_{rev} \end{align}$ نتیجه می شود که$dG\le 0$
و فقط برای یک فرایند برگشت پذیر dG = 0 استI hope I help you understand the question. Roham Hesami smile072 smile261 smile260 رهام حسامی ترم چهارم مهندسی هوافضا
تصویر

ارسال پست