$\dfrac{\partial p}{\partial r} \times dr \times 2\pi r \times dr \times dh =$نیروی شعاعی اعمال شده توسط فشار
این نیرو باید برابر باشد:$dm \times \omega^2 \times r$
$\therefore (2\pi r \times dr \times dh \times \rho) \times \omega^2 r = \dfrac{\partial p}{\partial r} \times dr \times 2\pi r \times dr \times dh$
$\dfrac{\partial p}{\partial r} = \rho \omega^2 r$
$\therefore p = \dfrac{\rho \omega^2 r^2}{2} + C$
این C باید برابر با 0 باشد، زیرا یک کل در مرکز ظرف در بالا وجود دارد، به این معنی که فشار گیج زمانی که r=0 باشد 0 است. بنابراین فشار در بالای ظرف به عنوان تابعی از r خواهد بود:
$p(r) = \dfrac{\rho \omega^2 r^2}{2}$
از آنجایی که حداکثر فشار در لبه های کف ظرف است، ابتدا باید فشار لبه های بالا را محاسبه کنیم، سپس از rgh برای ایجاد حداکثر فشار استفاده کنیم. فشار لبه بالایی ظرف عبارت است از:
$p(1) = \dfrac{1.94 \times 100 \times 1^2}{2} = 97_{lb/ft^2}$
از آنجایی که ظرف با شتاب 6ft/s2 به سمت بالا حرکت می کند، گویی به جای اینکه g برابر با 32.2ft/s2 باشد، برابر با 38.2ft/s2 است. بنابراین:
$p_{max} = 97 + 1.94 \times 38.2 \times 3 = 319.324_{lb/ft^2} = 2.22_{psi}$
اما پاسخ این سوال 3.52psi است. کجا اشتباه کردم؟
با تشکر از کمک شما.


