دیفیوزر باعث رانش میشود

مدیران انجمن: parse, javad123javad

ارسال پست
نمایه کاربر
rohamavation

نام: roham hesami radرهام حسامی راد

محل اقامت: 100 مایلی شمال لندن جاده آیلستون، لستر، لسترشر. LE2

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 3286

سپاس: 5494

جنسیت:

تماس:

دیفیوزر باعث رانش میشود

پست توسط rohamavation »

تصویر
دیفیوزر (diffuser) به وسیله‌ای گفته می‌شود که برعکس نازل عمل می‌کند.نازل به لوله‌ای ترمودینامیکی گفته می‌شود که سطح مقطع آن متغیر است و به منظور افزایش سرعت جریان خروجی و کنترل جهت آن به کار می‌رود. در نتیجه این تغییر مومنتوم، نیرویی ایجاد می‌شود. این نیرو را می‌توان به راحتی و با قرار دادن دست جلوی مسیر آب خروجی از شلنگ، آزمایش کرد.
به عنوان مثال، نازل موشک را در نظر بگیرید. خروج جرم از محفظه به سمت عقب و نیروی عکس‌العمل حاصل از آن در جهت مخالف، باعث ایجاد حرکت نسبی می‌شود. همان اندازه که ملخ در ایجاد نیروی محرکه یک هواپیمای ملخی اهمیت دارد، نازل هم در موتور جت مهم است. زیرا تبدیل انرژی به انرژی جنبشی اگزوز و مومنتوم خطی ناشی از آن که منجر به نیروی تراست (thrust) می‌شود، همگی داخل نازل اتفاق می‌افتد. اولین بار، نازل در سال ۱۸۸۸ میلادی و به طور همزمان در آلمان و سوئد اختراع شد. در برخی کتاب‌ها، تمام لوله‌هایی دارای سطح مقطع متغیر هستند، نازل می‌نامند. ولی در برخی کتاب‌ها نیز، آنها را به دو دسته نازل و دیفیوزر تقسیم می‌کنند.عملکرد نازل و دیفیوزرتصویر
یعنی با کاهش سرعت سیال، فشار آن را بالا می‌برد. سطح مقطع نازل در جهت عبور سیال، برای جریان‌های فروصوت کاهش و برای جریان‌های فراصوت، افزایش می‌یابد. خلاف این موضوع هم برای دیفیوزر صادق است.
نرخ انتقال حرارت بین سیال عبوری از داخل نازل و دیفیوزر و محیط اطراف آن معمولاً بسیار کوچک است (Q≈0) و در بسیاری از مسائل می‌توان از آن صرف نظر کرد. زیرا سرعت سیال، بسیار زیاد است و فرآیند به قدری سریع اتفاق می‌افتد که فرصتی برای انتقال حرارت باقی نمی‌ماند. همچنین، کار انجام شده و تغییر انرژی پتانسیل در نازل و دیفیوزر نیز برابر صفر است. ولی به دلیل سرعت بالای سیال در عبور از آنها، تغییرات انرژی جنبشی بسیار محسوس است و باید محاسبه شود. شکل بالا را در نظر بگیرید. در ادامه، با ارائه ، معادلات ترمودینامیکی را در نازل و دیفیوزر به کار خواهیم برد.
$ \large \dot{E}_{in} – \dot {E} _ {out} \: = \: \frac {dE_{system}} {dt} \: = \: 0 $
در رابطه بالا، $ \large \dot{E}_{in} – \dot {E} _ {out}$
نرخ مجموع انرژی انتقالی از طریق گرما، کار و جرم را نشان می‌دهد. از سوی دیگر، عبارت $ \large \frac {dE_{system}} {dt} $
نیز نشان دهنده نرخ تغییر انرژی‌های درونی، جنبشی و پتانسیل است که در نازل برابر صفر فرض می‌شود. در نتیجه، رابطه $ \large \dot{E}_{in} \: = \dot {E} _ {out} $
˙ برقرار خواهد بود. این رابطه را با در نظر گرفتن صفر بودن نرخ انتقال حرارت، کار و تغییر انرژی پتانسیل، به شیوه زیر بسط می‌دهیم.$\large \dot{m} \: (h_1 + \frac {V^2_1} {2}) \: = \dot {m} \: (h_2 + \frac {V^2_2} {2}) \\~\\
\large h_2 \: = h_1 \: – \frac {V^2_2 – V^2_1} {2} $ و به صور ت $ \large \dot{m} \: (h_1 + \frac {V^2_1} {2}) \: = \dot {m} \: (h_2 + \frac {V^2_2} {2}) \\~\\
\large h_2 \: = h_1 \: – \frac {V^2_2 – V^2_1} {2} $
سرعت خروج از دیفیوزر، در مقایسه با سرعت ورود به آن، بسیار کوچکتر است (V2≪V1). بنابراین، می‌توان از انرژی جنبشی در خروجی صرف نظر کرد. آنتالپی هوا در ورودی دیفیوزر با کمک جداول ترمودینامیک برابر با مقدار h1=h@283K=283.14kJ/kg است.
با شروع چرخه هوا به موتور القا می شود و فشرده می شود. شتابهای عقب در طی مراحل کمپرسور و در نتیجه افزایش فشار ، یک نیروی واکنشی بزرگ در جهت جلو ایجاد می کند. در مرحله بعدی ، هوا از طریق پخش کننده عبور می کند و در آنجا یک نیروی واکنشی کوچک اعمال می کند ، همچنین در جهت جلو
کمپرسور رانش رو به جلو را ارائه می دهد ، زیرا هوا را به عقب فشار می دهد (بنابراین فشرده می شود). اما چرا پخش کننده همچنین رانش رو به جلو را فراهم می کند؟ و همچنین چرا نازل رانش عقب را فراهم می کند؟
آیا از درک من از مکانیک اساسی سیالات ، یک پخش کننده نیروی رانش عقب را فراهم کند ، زیرا سرعت خروجی از سرعت ورودی کمتر است اما چرا پخش کننده همچنین رانش رو به جلو را فراهم می کند؟
دیفیوزر سرعت جریان را کاهش می دهد تا کمی دیرتر اختلاط سوخت و هوا و احتراق آن کاهش یابد . اگر فقط روی سرعت ورود و خروج تمرکز کنید ، هیچ رانشی وجود ندارد.
با این حال ، اگر به فشارهای وارد شده بر دیواره های پخش کننده نگاه کنید ، نتیجه متفاوتی ظاهر می شود. جریان کندتر به معنای فشار استاتیک بالاتر است و فشار کل در خروجی کمپرسور در حال حاضر بیشترین فشار در کل موتور است. فشار بر روی دیواره های پهن کننده منتشر کننده موتور را به دلیل شیب جلو بردار فشار (که عمود بر دیواره های انتشار عمل می کند) به جلو سوق می دهد. صفحه جت پالس مرتبط شما این موضوع را به خوبی توضیح می دهد.
مطمئناً اگر جریان گرم نشود و در نتیجه در پائین دست سرعت بیشتری بگیرد ، هیچ رانشی حاصل نمی شود. بنابراین پخش کننده به خودی خود محرک ایجاد نمی کند. این فقط وقتی اتفاق می افتد که درون موتور جت کارگر قرار گیرد.
و همچنین چرا نازل رانش عقب را فراهم می کند؟
همیشه اینگونه نیست ، اما در اینجا نازل دارای شکل همگرایی است که به سرعت بخشیدن به جریان صوتی کمک می کند و فشار باقی مانده را به سرعت تبدیل می کند. دیوارها اکنون دارای شیب رو به عقب هستند ، بنابراین بردار فشار بر روی آنها به یک جزرو به عقب کمک می کند. علاوه بر این ، سرعت جریان زیاد در امتداد دیواره های بزرگ نازل باعث ایجاد اصطکاک می شود که باید مورد توجه قرار گیرد.
برای مقایسه ، به مخروط پشت چرخ های توربین نگاه کنید. سهم محوری آن فقط ناشی از فشار رو به جلو است که بر آن وارد می شود.
و آیا نباید یک پخش کننده رانش عقب داشته باشد ، زیرا سرعت خروجی از سرعت ورودی کمتر است
قوانین در فیزیک ابزاری عالی است. آنها به شما اجازه می دهند مقدار های زیادی را محاسبه کنید بدون اینکه جزئیات جزئی روند واقعی را بررسی کنید. و این یک مثال عالی است: شما می توانید محرک کل موتور را از تغییر حرکت سیال کار محاسبه کنید. اما این به شما نمی گوید که چگونه نیرو در واقع اعمال می شود ، فقط مجموع نیروها بر روی کل موتور.
تصویر

عبدالرضا علي پور

نام: عبدالرضا علي پور

محل اقامت: بوشهر

عضویت : شنبه ۱۳۹۴/۷/۱۸ - ۰۰:۲۷


پست: 823

سپاس: 142

جنسیت:

Re: دیفیوزر باعث رانش میشود

پست توسط عبدالرضا علي پور »

در مورد انجکتور هم یه توضیحی بدید ایا فقط برای استارت مشعل از اجکتور استفاده میشه ؟ و مشعل دایما با ارسال سوخت روشن میمونه یا انجکتور باید به دفعات کار احتراق را انجام بدهد؟
به نظرم یه چیزی شبیه موتور شوفاژخونه هست درسته ؟

نمایه کاربر
rohamavation

نام: roham hesami radرهام حسامی راد

محل اقامت: 100 مایلی شمال لندن جاده آیلستون، لستر، لسترشر. LE2

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 3286

سپاس: 5494

جنسیت:

تماس:

Re: دیفیوزر باعث رانش میشود

پست توسط rohamavation »

استارت جت با apu هست.ژنراتور استارتر به ژنراتور گاز متصل می شود. در واقع این یک موتور الکتریکی است که توسط باتری (یا هر منبع تغذیه DC دیگر) تأمین می شود و برای میل لنگ شافت ژنراتور استفاده می شود. پس از روشن شدن موتور ، این موتور می تواند به عنوان ژنراتور تحویل دهنده برق DC مورد استفاده قرار گیرد.سوخت مد نظر نیز توسط نازل‌هایی که در محفظه قرار گرفته‌اند، درون هوای فشرده شده اسپری می‌شود. این عمل در حالت ایده‌آل با کمترین افت فشار ممکن و بیشترین انتقال حرارت انجام می‌شود.احتراق چند‌بخشی، الهام گرفته از محفظه احتراق Whittle است. اتاقک‌ها مطابق شکل به صورت شعاعی و دور تا دور موتور قرار گرفته‌اند، هم‌چنین هوایی که از سمت کمپرسور می‌آید مستقیما به درون آن‌ها هدایت می‌شود. هر اتاقک شامل یک مشعل است که هوای ورودی از کمپرسور، اطراف آن قرار می‌گیرد. تمامی این مشعل‌ها نیز با هم ارتباط دارند. این ویژگی به اتاقک‌ها کمک می‌کند تا در یک فشار کاری یکسان، فعالیت کنند و هم‌چنین امکان پخش مشعل اطراف موتور وجود داشته‌ باشددر مدل جدید annular-can در این مدل تعدادی مشعل احتراق، به صورت حلقوی و در معرض هوا قرار داده می‌شوند. هم‌چنین جریان هوا همانند مدلی است که در بخش قبل به آن اشاره شد. این ترتیب قرار‌گیری مشعل‌ها، به نگه‌داری و تعمیرات و هم‌چنین کم‌حجم‌تر کردن موتور مذکور کمک می‌کند.خوب جواب کلی شما سیستم احتراق، شامل سوخت پاش، جرقه زن و اتاقک و لوله احتراق می گردد. فرآیند انفجار در درون لوله های احتراق صورت می پذیرد که این عمل با وارد شدن هوا به اتاقک و مخلوط شدن آن با سوخت سپس انفجار آن به وسیله شمع جرقه زن انجام می شود. انژکتور Injector وسیله است که با استفاده از نیروی موتور، سوخت را به پودر تبدیل می کند و حکمت این کار در بهتر مشتعل شدن در صورت تبدیل به پودر نهفته است. البته سوخت قبل از ورود به انژکتور، مقداری گرم شده تا برای احتراق آماده تر باشد. ابتدا انژکتور سوخت را روی هوای متراکم می پاشد و سپس این مخلوط آماده انفجار است که به وسیله شمع جرقه زن، این عمل صورت می گیرد.تصویر
در اینده در مورد محفظه احتراق یک مقاله ارایه میکنم.رهام حسامی مهندسی هوافضا ترم سوم
تصویر

ارسال پست