سوال از دینامیک

مدیران انجمن: parse, javad123javad

mahi jo0o0on

نام: مهسا

محل اقامت: تهران

عضویت : پنج‌شنبه ۱۳۹۰/۱۱/۲۰ - ۰۱:۴۸


پست: 70

سپاس: 12

جنسیت:

Re: !!!!!!!!سوال از دینامیک،لطفأ توجه کنید!!!!!!!!!

پست توسط mahi jo0o0on »

ehsan.helli1 نوشته شده:اخری که گفتم درسته
پس میشه بگی چطوری به این نتیجه رسیدی؟؟؟ smile042 smile042 لطفأ smile046 smile036
روزی ما دوباره کبوتر هایمان را پیدا خواهیم کرد
و مهربانی دست زیبایی را خواهد گرفت
روزی که کمترین سرود بوسه است
و هر انسان برای هر انسان برادری ست
روزی که دیگر در خانه شان را نمیبندند
قفل افسانه ایست
و قلب برای زندگی بس است
.
.
.
و من آن روز را انتظار میکشم
حتی روزی که
دیگر نباشم.

نمایه کاربر
ehsan.helli1

نام: احسان

محل اقامت: تهران

عضویت : جمعه ۱۳۹۰/۱۰/۳۰ - ۲۱:۳۰


پست: 1688

سپاس: 624

جنسیت:

تماس:

Re: !!!!!!!!سوال از دینامیک،لطفأ توجه کنید!!!!!!!!!

پست توسط ehsan.helli1 »

باید تقسیم g بر جرم قسمت روی میز بکنی

mahi jo0o0on

نام: مهسا

محل اقامت: تهران

عضویت : پنج‌شنبه ۱۳۹۰/۱۱/۲۰ - ۰۱:۴۸


پست: 70

سپاس: 12

جنسیت:

Re: !!!!!!!!سوال از دینامیک،لطفأ توجه کنید!!!!!!!!!

پست توسط mahi jo0o0on »

ا.ت نوشته شده:بابا جان وقتی مسافت x پیموده شده چه کسری از طناب آویزونه؟



جرم قسمت آویزون چه کسری از کل جرم طنابه؟ همون



پس جرم قسمت آویزون میشه چقدر؟



نیروی گرانش وارد بر کل طناب میشه چقدر؟ جرم قسمت آویزونضربدر g یعنی



خب وقتی این نیروی کل وارد بر زنجیر باشه، قانون دوم نیوتون چی میگه؟



و آخرش هم میشه

آخیییییییییییییییییییش!دستت درد نکنه معلوم شد 16 سالت نیستا!!!!!!!!! smile036
ممنون از تو و آقای سیدیان! smile036
روزی ما دوباره کبوتر هایمان را پیدا خواهیم کرد
و مهربانی دست زیبایی را خواهد گرفت
روزی که کمترین سرود بوسه است
و هر انسان برای هر انسان برادری ست
روزی که دیگر در خانه شان را نمیبندند
قفل افسانه ایست
و قلب برای زندگی بس است
.
.
.
و من آن روز را انتظار میکشم
حتی روزی که
دیگر نباشم.

mahi jo0o0on

نام: مهسا

محل اقامت: تهران

عضویت : پنج‌شنبه ۱۳۹۰/۱۱/۲۰ - ۰۱:۴۸


پست: 70

سپاس: 12

جنسیت:

Re: !!!!!!!!سوال از دینامیک،لطفأ توجه کنید!!!!!!!!!

پست توسط mahi jo0o0on »

ehsan.helli1 نوشته شده:باید تقسیم g بر جرم قسمت روی میز بکنی
خب چرا؟؟؟ولی فکر کنم این آقای سیدیان و دوستشون درست میگنا! smile039
روزی ما دوباره کبوتر هایمان را پیدا خواهیم کرد
و مهربانی دست زیبایی را خواهد گرفت
روزی که کمترین سرود بوسه است
و هر انسان برای هر انسان برادری ست
روزی که دیگر در خانه شان را نمیبندند
قفل افسانه ایست
و قلب برای زندگی بس است
.
.
.
و من آن روز را انتظار میکشم
حتی روزی که
دیگر نباشم.

نمایه کاربر
ehsan.helli1

نام: احسان

محل اقامت: تهران

عضویت : جمعه ۱۳۹۰/۱۰/۳۰ - ۲۱:۳۰


پست: 1688

سپاس: 624

جنسیت:

تماس:

Re: !!!!!!!!سوال از دینامیک،لطفأ توجه کنید!!!!!!!!!

پست توسط ehsan.helli1 »

حرفی که من میزنم هم همین جوابو میده فقط به جای ضرب در جرم اویزون من تقسیم بر جرم رووی میز کردم

Townsend

عضویت : دوشنبه ۱۳۸۸/۱/۳ - ۱۰:۰۴


پست: 66

سپاس: 18

Re: !!!!!!!!سوال از دینامیک،لطفأ توجه کنید!!!!!!!!!

پست توسط Townsend »

در این سوال به صورت کاملا" تصادفی رابطه ی F=ma صدق میکنه .

چون اگه از رابطه ی درست استفاده کنیم جمله ی تصحیحی به صورت اتفاقی از دو طرف رابطه حذف میشه.

نمایه کاربر
rohamjpl

نام: Roham Hesami رهام حسامی

محل اقامت: فعلا تهران قیطریه بلوار کتابی 8 متری صبا City of Leicester Area of Leicestershire LE7

عضویت : سه‌شنبه ۱۳۹۹/۸/۲۰ - ۰۸:۳۴


پست: 1848

سپاس: 3349

جنسیت:

تماس:

Re: سوال از دینامیک

پست توسط rohamjpl »

تلاش من این است که مرکز جرم زنجیره را در نظر بگیرم. مرکز جرم $x_{CM}=\frac{(L-x)^{2}}{2L}$ محاسبه می‌شود، سپس دوبار تفکیک می‌کنیم تا بیانی از $a_{CM}$ به دست آید و نیروی خالص روی مرکز جرم را بیابید، منهای گرانش Mg، باید نیرویی برای متوقف کردن زنجیره باشد. در نهایت، نیروی طبیعی وارد بر زنجیره از قبل روی میز $Mg(x/L)$ است سپس با هم جمع کنید. اما مشکل این است که من نتوانستم مشتقات $x_{CM}$ را بفهمم: $v_{CM}=\frac{-(L-x)}{L}\frac{dx}{dt}$ چه چیزی باید dx/dt باشد؟ کسی میتونه راهنماییم کنه؟ یا رویکرد من درست نیست؟ من می دانم که این یک مشکل چالش برانگیز است میز باید وزن طول زنجیره ای را که قبلاً افتاده است نگه دارد و متوقف شود. در همان زمان، نیرویی به آن وارد می شود تا هر طول زنجیره ای را که سقوط می کند متوقف کند. مرکز جرم و سرعت آن در اینجا مهم نیست. چیزی که باید در عوض به آن نگاه کنید، سرعت طول زنجیره ای است که در هر نقطه از زمان به جدول کاهش می یابد، این کلید پاسخ است.تصویر
یک زنجیره یکنواخت به طول 𝑳 روی یک میز افقی صاف قرار داده شده است و $𝑳/4$ آن در لبه میز آویزان است. پس از رها شدن، زنجیر از حالت سکون شروع به لیز خوردن از لبه میز می کند. سرعتی که زنجیر درست پس از خروج از میز به لبه میز می لغزد (زنجیر روی زمین نیست) چقدر است؟من تصور می کنم این زنجیره شبیه به این وضعیت است:
تصویر
از این روانرژی پتانسیل گرانشی زنجیره L/4 = انرژی جنبشی کل زنجیره
$\frac{mgh}{4} = \frac{mv^{2}}{2}
\\ v = \sqrt{\frac {gh}{2}}$
با این حال، پاسخ این است
$𝒗 = \sqrt{\frac{15𝒈𝑳}{16}}$
در عوض تعادل نیرو را در نظر بگیرید.
اجازه دهید x نشان دهنده محور رو به پایین با مبدا در لبه جدول باشد. همچنین، اجازه دهید$l_0$ طول اولیه روی لبه جدول باشد. ما در اینجا اصطکاک را فرض نمی کنیم و تکانه حفظ می شود.
$F = \frac{x}{L}mg$و با استفاده از قانون دوم نیوتن، $m\ddot{x} = \frac{x}{L}mg$. این یک ODE ساده و مرتبه اول را به دست می دهد و با اعمال شرایط اولیه $x(0)=l_0$ و $\dot{x}(0) = 0$، سپس اجازه می دهیم $k=\sqrt{g/L}$
$x(t) = \frac{l_0}{2}\left(e^{kt} + e^{-kt} \right) = l_0 \cosh(kt)$
لحظه ای که آخرین قسمت زنجیره از جدول خارج می شود، زمان$L = l_0 \cosh(kt^*)$ یا $t^* = \frac{1}{k}\text{arcosh}(L/l_0)$ داریم.سپس با $x=L/l_0$ و برخی از هویت ها
$\begin{align}
v^* &= l_0 k \sinh(\text{arcosh}(x)) \\
&= l_0 k \sinh(\ln (x + \sqrt{x^2 - 1})) \\
&= \frac{l_0 k }{2}\left(x + \sqrt{x^2 - 1} - \frac{1}{x + \sqrt{x^2 - 1}}\right)\\
&= \frac{l_0 k }{2}\left( 2\sqrt{x^2 - 1}\right) \\
\end{align}$جایگزینی در مقادیر و ساده سازی، پاسخ نهایی را به دست می دهد،$v^* = \sqrt{\frac{15 L g}{16}}$
بیایید کلی نگاه کنیم یک زنجیره سنگین یکنواخت به طول a در ابتدا دارای طول b است که از یک میز آویزان شده است. قسمت باقیمانده زنجیر a - b روی میز حلقه می شود. نشان دهید که اگر زنجیره آزاد شود، سرعت زنجیره هنگام خروج آخرین پیوند از جدول $\sqrt{2g\frac{a^3 - b^3}{3a^2}}$ است.
خوب، پس این یک مشکل جرم متغیر است، بنابراین حرکت دائما در حال تغییر است:
$F_{ext}=m(t)g=\frac{dP}{dt}= \frac{d(m(t)v(t))}{dt}=ma +v\dot{m}$
$mg = ma + v\dot{m}$
گرانش روی جرم آویزان از جدول تأثیر می گذارد، جرم را می توان به عنوان تابعی از طول، و همچنین سرعت نوشت (که در آن λ چگالی جرم خطی است)
$m(t) = \lambda l(t)$
$\dot{m(t)} = \lambda v(t)=\lambda \dot {l(t)}$
$v(t) = \dot {l(t)}$
$a(t) = \ddot{l(t)}$
$\lambda l(t)g=\lambda l(t) \ddot{l(t)} + \dot {l(t)} \lambda \dot {l(t)}$
با فرض صحیح بودن همه اینها $0 =l(t)(g -\ddot{l(t)}) +\dot{l(t)}^2$
من سعی کردم این DE را حل کنم، اما روش های زیادی را برای DE های غیر خطی نمی دانم.با ℓ(t) به عنوان طول زنجیره آویزان از میز، معادله دیفرانسیل
$\ell(g-\ddot \ell)=\dot \ell^2$
از سوال را می توان به صورت بازنویسی کرد
$y\dot y=g\ell^2 \dot\ell,$
جایی که $y=\ell \dot\ell$˙. سپس، ادغام در بازه زمانی مناسب، سرعت نهایی را به دست می‌دهد
$v_f=\sqrt{\frac{2g}{3}\frac{a^3-b^3}{a^2}}$
با این حال، معادله دیفرانسیل بالا نادرست است، زیرا تنش در زنجیره را در نظر نمی گیرد. معادله صحیح باید باشد
$\ddot\ell=\frac{g}{a}\ell,$
دادن سرعت نهایی
که با پایستگی انرژی همخوانی دارد.من راه حل مبتنی بر صرفه جویی در انرژی را فقط برای کامل بودن اضافه می کنم. تغییر در انرژی پتانسیل گرانشی را بر اساس تصویر نوشتم که تکه زنجیره ای که روی میز شروع می شود به صورت عمودی از نقطه b زیر جدول به پایان می رسد (و بقیه زنجیره بدون تغییر است).$\Delta U_g = -g\lambda\int_0^{a-b}(b+x)dx$و$\Delta K = \frac{1}{2}\lambda av^2$جایی که λ جرم در واحد طول زنجیره است.
$\frac{1}{2}av^2 = g[bx + \frac{1}{2}x^2]_0^{a-b}$
$v^2 = \frac{2g}{a}(ba-b^2+\frac{1}{2}a^2-ab+\frac{1}{2}b^2)$
$v = \sqrt{\frac{g}{a}(a^2-b^2)}$
hope I helped you understand the question. Roham Hesami, sixth
semester of aerospace engineering
smile072 smile072 رهام حسامی ترم ششم مهندسی هوافضاتصویر
smile260 smile016 :?:
تصویر

ارسال پست