فيزيك نظري مشكلات و راه حل ها

نوشته : حسين جوادي

روش استقرايي و ديفرانسيلي:

جهان بيني علمي در فيزيك نظري با كارهاي گاليله آغاز شد. هرچند كه تلاشهاي گاليله زيربناي فيزيك را تشكيل داد، اما اين تلاشها ريشه در نگرشهاي جديد به پديده هاي فيزيكي داشت كه مهمترين آنها را مي توان در آثار برونو و كپلر مشاهده كرد. برونو به طرز ماهرانه اي در آثار خود تشريح كرد كه همه ي ستارگان جهان نظير خورشيد هستند. كپلر با ارائه سه قانون خود نشان داد كه حركت سيارات قانونمند است و يك نظم منطقي در حركت، دوره تناوب و مسير آنها وجود دارد.

گاليله آزمايشهاي زيادي انجام داد تا بتواند حركت اجسام را در يكسري قوانين كلي خلاصه كند. در اين ميان آزمايش سطح شيبدار گاليله از همه مشهورتر است. اما نمي توان تاثير نگرش گاليله را در پيشرفت علم به اين آزمايشها خلاصه كرد. در حقيقت گاليله نوعي نگرش منطقي به پديده هاي فيزيكي داشت كه تا آن زمان بي سابقه بود. اين نگرش زيربناي روش استقرايي را در فيزيك تشكيل داد و بتدريج به ساير علوم گسترش يافت.

هرچند آزمايشهاي گاليله از نظر كمي و كيفي با آزمايشهاي امروزي قابل مقايسه نيست، اما آزمايشهاي بسيار پيچيده و پيشرفته امروزي نيز از همان قاعده ي نگرش استقرايي گاليله پيروي مي كنند. به اين ترتيب گاليله زير ساخت فيزيك را ايجاد كرد و نحوه ي برخورد علمي با طبيعت را نشان داد. اما نتيجه ي اين تلاشها به صورت تشريحي بيان مي شد.

سالها بعد نيوتن نتايج به دست آمده توسط گاليله را فرمول بندي و در قالب يكسري معادلات رياضي ارائه كرد و ساختار فيزيك كلاسيك را مدون ساخت. قانون جهاني گرانش نيوتن دست آورد بزرگي بود. نيوتن براي توجيه پديده هاي فيزيكي " نگرش ديفرانسيلي" را جايگزين روش انتگرالي كرد. در روش انتگرالي همواره نتايج مورد نظر است. در حاليكه در نگرش ديفرانسيلي تحليل روند رسيدن به نتايج مورد بحث قرار مي گيرد و جواب هاي خاص را مي توان از ان به دست اورد. به عنوان مثال قوانين كپلر را با قانون جهاني گرانش نيوتن مقايسه كنيد. در قوانين كپلر نمي توان دوره ي گردش يك سياره را از روي دوره ي گردش سياره ي ديگر استخراج كرد. علاوه بر آن هر سه قانون كپلر مستقل از هم هستند. در حاليكه در قانون نيوتن مي توان دوره گردش همه ي سيارات به دور خورشيد را به دست آورد.

بنابراين مي توان گفت گاليله روش استقرايي را به وجود آورد و نيوتن روش ديفرانسيلي را ابداع كرد. لذا تاثير تلاشهاي گاليله و نيوتن در پيشرفت علوم ممتاز و غير قابل انكار و در عين حال بي نظير است.

مشكلات قوانين نيوتن

هنگاميكه نيوتن قوانين حركت و قانون جهاني جاذبه را ارائه كرد، اين قوانين از نظر منطقي با اشكالات جدي همراه بود. قانون دوم نيوتن تا سرعتهاي نامتناهي را پيشگويي مي كرد كه با تجربه سازگار نيست. قانون دوم به صورت F=ma ارائه شده است كه طبق آن نيروي وارد شده به جسم مي تواند تا بي نهايت سرعت آن افزايش دهد. اين امر با مشاهدات تجربي قابل تطبيق نيست. مشكل بعدي كنش از راه دور بود. يعني اثر نيروي جاذبه با سرعت نامتناهي منتقل مي شد. تاثير از راه دور همواره مورد انتقاد قرار قرار داشت.

اما مهمترين مشكل قوانين نيوتن در قانون جهاني جاذبه وي بود و خود نيوتن نيز متوجه آن شده بود.

نيوتن دريافت كه بر اثر قانون جاذبه او، ستاركان بايد يكديگر را جذب كنند و بنابراين اصلاً به نظر نمي رسد كه ساكن باشند. نيوتن در سال 1692 طي نامه اي به ريچارد بنتلي نوشت "كه اكر تعداد ستارگان جهان بينهايت نباشد، و اين ستارگان در ناحيه اي از فضا پراكنده باشند، همگي به يكديگر برخورد خواهند كرد. اما اكر تعداد نامحدودي ستاره در فضاي بيكران به طور كمابش يكسان پراكنده باشند، نقطه مركزي در كار نخواهد بود تا همه بسوي آن كشيده شوند و بنابراين جهان در هم نخواهد ريخت."

اين برداشت نيز با يك اشكال اساسي مواجه شد. بنظر سيليجر طبق نظريه نيوتن تعداد خطوط نيرو كه از بينهايت آمده و به يك جسم مي رسد با جرم آن جسم متناسب است. حال اكر جهان نامتناهي باشد و همه ي اجسام با جسم مزبور در كنش متقابل باشند، شدت جاذبه وارد بر آن بينهايت خواهد شد.

مشكل بعدي قانون جاذبه نيوتن اين است كه طبق اين قانون يك جسم به طور نامحدود مي تواند ساير اجسام را جذب كرده و رشد كند، يعني جرم يك جسم مي تواند تا بينهايت افزايش يابد. اين نيز با تجربه تطبيق نمي كند، زيرا وجود جسمي با جرم بينهايت مشاهده نشده است.

مشكل بعدي قوانين نيوتن در مورد دستكاه مرجع مطلق بود. همچنان كه مي دانيم حركت يك جسم نسبي است، وقتي سخن از جسم در حال حركت است، نخست بايد ديد نسبت به چه جسمي يا در واقع در كدام چارچوب در حركت است. دستگاه هاي مقايسه اي در فيزيك داراي اهميت بسياري هستند. قوانين نيوتن نسبت به دستگاه مطلق مطرح شده بود. يعني در جهان يك چارچوب مرجع مطلق وجود داشت كه حركت همه اجسام نسبت به آن قابل سنجش بود. در واقع همه ي اجسام در اين چارچوب مطلق كه آن را "اتر" مي ناميدند در حركت بودند. يعني ناظر مي توانست از حركت نسبي دو جسم سخن صحبت كند يا مي توانست حركت مطلق آن را مورد توجه قرار دهد.

براين اساس مايكلسون تصميم داشت سرعت زمين را نسبت به دستگاه مطلق "اتر" به دست آورد. مايكلسون يك دستگاه تداخل سنج اختراع كرد و در سال 1880 تلاش كرد طي يك آزمايش سرعت مطلق زمين را نسبت به دستگاه مطلق "اتر" به دست آورد. نتيجه آزمايش منفي بود. (براي بحث كامل در اين مورد به كتابهاي فيزيك بنيادي مراجعه كنيد.) با آنكه آزمايش بارها و بارها تكرار شد، اما نتيجه منفي بود. هرچند مايكلسون از اين آزمايش نتيجه ي مورد نظرش به دست نياورد، اما به خاطر اختراع دستگاه تداخل سنج خود، بعدها برنده جايزه نوبل شد.

نسبيت خاص

براي توجيه علت شكست آزمايش مايكلسون نظريه هاي بسياري ارائه شد تا سرانجام اينشتين در سال 1905 نسبيت خاص را مطرح كرد. نسبيت خاص شامل دو اصل زير است:

1 - قوانين فيزيك در تمام دستگاه هاي لخت يكسان است و هيچ دستگاه مرجع مطلقي در جهان وجود ندارد.

2 - سرعت نور در فضاي تهي و در تمام دستگاه هاي لخت ثابت است.

در نسبيت سرعت نور، حد سرعت ها است، يعني هيچ جسمي نمي تواند با سرعت نور حركت كند يا به آن برسد.

نتيجه اين بود كه قانون دوم نيوتن بايد تصحيح مي شد. طبق نسبيت جرم جسم تابع سرعت آن است، يعني با افزايش سرعت، جرم نيز افزايش مي يابد وهر جسمي كه بخواهد با سرعت نور حركت كند بايد داراي جرم بينهايت باشد. لذا قانون دوم نيوتن بصورت زير تصيح شد.

F=dp/dt=d(mv)/dt=vdm/dt+mdv/dt

m=m0/(1-v^2/c^2)^1/2


بنابر اين جرم تابع سرعت است و با افزايش سرعت، جرم نيز افزايش مي يابد. هنگاميكه سرعت جسم به سمت سرعت نور ميل كند، جرم به سمت بينهايت ميل خواهد كرد و عملاً هيچ نيرويي نمي تواند به آن شتاب دهد.

از طرف ديگر طبق نسبيت جرم و انرژي هم ارز هستند، يعني جرم جسم را مي توان بصورت محتواي انرژي آن مورد ارزيابي قرار داد. بنابراين انرژي داراي جرم است. اما در نسبيت نور از كوانتومهاي انرژي تشكيل مي شود كه آن را فوتون مي نامند و با سرعت نور حركت مي كند. اين سئوال مطرح شد كه اكر انرژي داراي جرم است و فوتون نيز حامل انرژي است كه با سرعت نور حركت مي كند، پس چرا جرم آن بينهايت نيست؟

پاسخ نسبيت به اين سئوال اين بود كه جرم حالت سكون فوتون صفر است. در حاليكه رابطه ي جرم نسبيتي در مورد جرم حالت سكون غير صفر بر قرار است. لذا در نسبيت با دو نوع ذرات سروكار داريم، ذراتي كه داراي جرم حالت سكون غير صفر هستند نظير الكترون وذراتي كه داراي جرم حالت سكون صفر هستند مانند فوتون. در نسبيت تنها ذراتي مي توانند با سرعت نور حركت كنند كه جرم حالت سكون آنها صفر باشد.

مشكل نسبيت خاص در اين است كه جرم نسبيتي آن (جرم بينهايت) مانند سرعت بينهايت در مكانيك كلاسيك با تجربه تطبيق نمي كند. يعني هيچ نمونه ي تجربي كه با جرم بينهايت نسبيت تطبيق كند وجود ندارد.

علاوه بر آن در نسبيت و حتي در مكانيك كوانتوم توضيحي وجود ندارد كه نحوه ي توليد فوتون را با سرعت نور توضيح بدهد. و چرا فوتون در حالت سكون يافت نمي شود. آيا فوتون از ذرات ديگري تشكيل شده است؟ اگر جواب منفي است اين سئوال مطرح مي شود كه فوتون هاي مختلف با يك ديگر چه اختلافي دارند؟ در حاليكه همه ي فوتون ها با انرژي متفاوت با سرعت نور حركت مي كنند. آزمايش نشان داده است كه فوتون در برخورد با ساير ذرات قسمتي از انرژي خود را از دست مي دهد. حال اين سئوال مطرح مي شود كه فرض كنيم فوتون شامل ذرات ديگري نيست، اين را بايد توضيح داد وقتي قسمتي از آن جدا مي شود و باز هم داراي همان خواص اوليه است ولي با انرژي كمتر؟ يعني فوتون قابل تقسيم است، هر ذره ي قابل تقسيمي بايد شامل زير ذره باشد.

واقعيت اين است كه فوتون در شرايط نور توليد مي شود و اجزاي تشكيل دهنده آن نيز بايستي با همان سرعت نور حركت كنند و حالت سكون فوتون يعني تجزيه ي آن به اجزاي تشكيل دهنده اش.

از طرفي مي دانيم جرم و انرژي هم ارز هستند، آيا اين منطقي است كه مي توان سرعت جرم را تغيير داد اما سرعت انرژي ثابت است؟

نسبيت عام:

نسبيت خاص داراي يك محدوديت اساسي بود. اين محدوديت ناشي از آن بود كه رويدادهاي فيزيكي را در دستگاه هاي لخت مورد بررسي قرار مي داد، در حاليكه در جهان واقعي دستگاه ها شتاب دار هستند. هرچند مي توان در بر رسي برخي رويداد ها به دستگاه هاي لخت بسنده كرد، اما اين دستگاه ها براي بررسي تمام رويدادها ناتوان هستند.

اينشتين در سال 1915 نسبيت عام را ارائه كرد و نسبيت خاص به عنوان حالت خاصي از نسبيت عام در آمد.

نسبيت عام بر اساس اصل هم ارزي تدوين شد.

اصل هم ارزي:

قوانين فيزيك در يك ميدان جاذبه يكنواخت و در يك دستگاه كه با شتاب ثابت حركت مي كند، يكسان هستند.

به عنوان: فرض كنيم يك دستگاه مقايسه اي با شتاب ثابت در حركت است. مشاهدات در اين دستگاه نظير مشاهدات در يك ميدان گرانشي يكنواخت است در صورتي كه شدت ميدان گرانشي برابر شتاب دستگاه باشد، يعني:

a=g

باشد، در اين صورت مشاهدات يكسان خواهد بود.

مهمترين دستاورد نسبيت عام توجيه مدار عطارد بود. بررسي هاي نجومي نشان داده بود كه نقطه حضيض عطارد جابه جا مي شود. بيش ار يكصد سال بود كه فيزيكدانان متوجه ان شده بودند، اما نمي توانستند با قوانين نيوتن توجيه كنند. اما نسبيت عام توانست أن را توجيه كند. بنا بر نسبيت، گرانش اثر هندسي جرم بر فضاي اطراف خود است. كه فضا-زمان ناميده مي شود. يعني جرم فضاي اطراف خود را خميده مي كند و مسير نور در اطراف آن خط مستقيم نيست، بلكه منحني است. در سال 1919 انحناي فضا را اهنگام كسوب كامل خورشيد با نوري كه از طرف ستاره ي مورد نظري به سوي زمين در حركت بود و از كنار خورشيد مي گذشت مورد تحقيق قرار دادند كه با پيشگويي نسبيت تطبيق مي كرد. اين موفقيت بسيار بزرگي براي نسبيت بود. از آن زمان به بعد توجه به ساختار هندسي و خواص توپولوژيك فضا بررسي واقعيت هاي فيز يكي را به حاشيه راند.

مضافاً اين كه گرانش را از فهرست نيروهاي اساسي طبيعت در فيزيك نظري حذف كرد. مشكلات اساسي نسبيت را مي توان به صورت زير فهرست كرد: 1- مشكل نسبيت با مكانيك كوانتوم- مكانيك كوانتوم ساختار ريز و كوانتومي كميت ها و واكنش متقابل آنها را مورد بررسي قرار مي دهد. به عبارت ديگر نگرش مكانيك كوانتوم بر مبناي كوانتومي شكل گرفته است. در اين زمينه تا جايي پيش رفته كه حتي اندازه حركت و برخي ديگر از كميتها را كوانتومي معرفي مي كند. اين نتايج بر مبناي يكسري شواهد تجربي مطرح شده و قابل پذيرش است. علاوه بر آن تلاشهاي زيادي انجام مي شود پديده هاي بزرگ جهان را با قوانين شناخته شده در مكانيك كوانتوم توجيه كنند. حال به نسبيت توجه كنيد كه فضا-زمان را پيوسته در نظر مي گيرد. بنابراين نسبيت با مكانيك كوانتوم ناسازگار است.

تلاشهاي زيادي انجام شده تا به طريقي يك همانگي منطقي و قابل قبول بين نسبيت و مكانيك كوانتوم ايحاد شود. در اين مورد كارهاي ديراك شايان توجه است كه مكانيك كوانتوم نسبيتي را پايه گذاري كرد و آن را توسعه داد. اما در مورد نسبيت عام موفقيت چنداني نصيب فيزيكدانان نشده است. 2- پيچيدگي و عدم وجود تفاهم در نسبيت- پيچيدگي نسبيت موجب شده كه تفاهم منطقي بين فيزيكدانان در مورد نتايج و پيشگويي هاي نسبيت وجود نداشته باشد. به عبارت ديگر نسبيت شديداً قابل تفسير است. اين تفاسيرگاهي چنان متناقض هستند كه حتي فيزيكدان بزرگي نظير استفان هاوكينگ نظر خود را تغيير داد. البته اين براداشتهاي متفاوت از نسبيت ناشي از گذشت زمان نيست، بلكه از آغاز حتي براي خود اينشتين كه نسبيت را مطرح كرد وجود داشت. به عنوان مثال: اينشتين از سال 1917 شروع به تدوين يك نظريه قابل تعميم به عالم يرد.

وي با مشكلات حل نشدني رياضي برخورد كرد. به همين دليل در معادلات گرانش عبارت مشهور " پارامتر عالم " را وارد كرد. ملاحظات وي در اين موضوع بر دو فرضيه مبتني بود. 1- ماده داراي چگالي متوسطي در فضاست كه در همه جا ثابت و مخالف صفر است. 2- بزرگي " شعاع " فضا به زمان بستگي ندارد. در سال 1922 فريدمان نشان داد كه اگر از فرضيه دوم چشم پوشي شود، مي توان فرضيه اول را حفظ كرد بي آنكه در معادلات به پارامتر عالم نيازي باشد. فريدمان بر اين اساس يك معادله ي ديفرانسيل به صورت زير ارائه كرد: (dR/dt)^2 - C/R+K=0 در واقع سالها قبل از كشف هابل در مورد انبساط فضا، فريدمان دقيقاً كشفيات او را پيش بيني كرده بود. معادله ي فريدمان معادله ي اصلي كيهان شناخت نيوتني است و بدون تغيير در نظريه نسبيت عام نيز صادق است.

اينشتين بر همه نتايج به دست آمده توسط فريدمان اعتراض كرد و مقاله اي نيز در اين باب انتشار داد. سپس حقايق را در فرضيه فريدمان ديد و با شجاعت كم نظيري طي نامه اي كه براي سردبير مجله آلماني فرستاد به اشتباه خود در محاسباتش اعتراف كرد. بيشتر مشيلات نسبيت ناشي از خواصي است كه به علت وجود ماده براي فضا قايل مي شوند. كه در آن هندسه جاي فيزيك را مي گيرد. زماني پوانكاره گفته بود كه اگر مشاهدات ما نشان دهد كه فضا نااقلبدسي است، فيزيكدانان مي توانند فضاي اقليدسي را قبول كرده و نيروهاي جديدي وارد نظريه هاي خود كنند. اما نسبيت چنين نكرد و ماهيت پديده هاي فيزيكي را به دست فراموشي سپرد. هرچند پديده هاي فيزيكي را بدون ابزار محاسباتي، اعم از جبري و هندسي نمي توان توجيه كرد، اما فيزيك نه هندسه است و نه جبر، فيزيك، فيزيك است وبس!!! 3- مشكل گرانش نيوتني در نسبيت همچنان باقي است- در نسبيت فضا-زمان داراي انحناست. هرچه ماده بيشتر و چگالتر باشد، انحناي فضا بيشتر است.

سئوال اين است كه اين انحناي فضا تا كجا مي انجامد؟ در نسبيت انحناي فضا مي تواند چنان تابيده شود كه حجم به صفر برسد. براي آنكه ماده بتواند چنان بر فضا اثر بگذارد كه حجم به صفر برسد، بايد جرم به سمت بي نهايت ميل كند. يعني نسبيت نتوانست مشكل قانون گرانش را در مورد تراكم ماده در فضا حل كند، علاوه بر آن بر مشكل افزود. زيرا قانون نيوتن مي پذيرد كه ماده تا بي نهايت مي تواند متمركز شود، اما حجم صفر با آن سازگار نيست. اما نسبيت علاوه بر آن كه مي پذيرد ماده مي تواند تا بي نهايت متراكم شود، پيشگويي مي كند كه حجم آن نيز به صفر مي رسد.

چه بايد كرد؟

1 - مشاهدات تجربي نشان مي دهد كه قانون جهاني گرانش نيوتن (يا حجم صفر نسبيت) بايد مجدداً مورد بررسي قرار گيرد.

2 - قانون دوم نيوتن نياز به برسي مجدد دارد، اما نه به گونه كه افزايش جرم (انرژي) را تا بي نهايت بپذيرد. جرم-انرژي بينهايت در نسبيت مانند سرعت بي نهايت در م كانيك نيوتني غير واقعي و با مشاهدات تجربي ناسازگار است.

3 - ساختار هندسي فضا تابع چگالي ماده است كه از نيروي گرانش آن ايجاد مي شود. به عبارت ديگر اين نيروي گرانش است كه ساختار هندسي فضا را شكل مي دهد، نه شكل هندسي فضا موجب ايجاد پديده اي مي شود كه ما آن را گرانش مي ناميم. در واقع گرانش نه تنها يك نيروي اساسي است، بلكه منشاء توليد انرژي است.

4 - در ساختار كلان حهان همان قانوني حاكم است كه در كوچكترين واحدهاي كميت هاي طبيعت حاكم است. يعني قوانين جهان ميكروسكپي را مي توان به جهان ماكروسپي تعميم داد.

نتيجه: مكانيك كلاسيك، مكانيك كوانتوم و نسبيت را بايد همزمان مورد بررسي مجدد قرار داد و اين كاري است كه:

Theory of CPH آن را انجام داده است.

منبع :www.cph-theory.persiangig.com